org.apache.spark.mllib.recommendation
MatrixFactorizationModel
Companion object MatrixFactorizationModel
class MatrixFactorizationModel extends Saveable with Serializable with Logging
Model representing the result of matrix factorization.
- Annotations
- @Since("0.8.0")
- Source
- MatrixFactorizationModel.scala
- Note
- If you create the model directly using constructor, please be aware that fast prediction requires cached user/product features and their associated partitioners. 
- Alphabetic
- By Inheritance
- MatrixFactorizationModel
- Logging
- Serializable
- Saveable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new MatrixFactorizationModel(rank: Int, userFeatures: RDD[(Int, Array[Double])], productFeatures: RDD[(Int, Array[Double])])- rank
- Rank for the features in this model. 
- userFeatures
- RDD of tuples where each tuple represents the userId and the features computed for this user. 
- productFeatures
- RDD of tuples where each tuple represents the productId and the features computed for this product. 
 - Annotations
- @Since("0.8.0")
 
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def predict(usersProducts: JavaPairRDD[Integer, Integer]): JavaRDD[Rating]Java-friendly version of MatrixFactorizationModel.predict.Java-friendly version of MatrixFactorizationModel.predict.- Annotations
- @Since("1.2.0")
 
-    def predict(usersProducts: RDD[(Int, Int)]): RDD[Rating]Predict the rating of many users for many products. Predict the rating of many users for many products. The output RDD has an element per each element in the input RDD (including all duplicates) unless a user or product is missing in the training set. - usersProducts
- RDD of (user, product) pairs. 
- returns
- RDD of Ratings. 
 - Annotations
- @Since("0.9.0")
 
-    def predict(user: Int, product: Int): DoublePredict the rating of one user for one product. Predict the rating of one user for one product. - Annotations
- @Since("0.8.0")
 
-    val productFeatures: RDD[(Int, Array[Double])]- Annotations
- @Since("0.8.0")
 
-    val rank: Int- Annotations
- @Since("0.8.0")
 
-    def recommendProducts(user: Int, num: Int): Array[Rating]Recommends products to a user. Recommends products to a user. - user
- the user to recommend products to 
- num
- how many products to return. The number returned may be less than this. 
- returns
- Rating objects, each of which contains the given user ID, a product ID, and a "score" in the rating field. Each represents one recommended product, and they are sorted by score, decreasing. The first returned is the one predicted to be most strongly recommended to the user. The score is an opaque value that indicates how strongly recommended the product is. 
 - Annotations
- @Since("1.1.0")
 
-    def recommendProductsForUsers(num: Int): RDD[(Int, Array[Rating])]Recommends top products for all users. Recommends top products for all users. - num
- how many products to return for every user. 
- returns
- [(Int, Array[Rating])] objects, where every tuple contains a userID and an array of rating objects which contains the same userId, recommended productID and a "score" in the rating field. Semantics of score is same as recommendProducts API 
 - Annotations
- @Since("1.4.0")
 
-    def recommendUsers(product: Int, num: Int): Array[Rating]Recommends users to a product. Recommends users to a product. That is, this returns users who are most likely to be interested in a product. - product
- the product to recommend users to 
- num
- how many users to return. The number returned may be less than this. 
- returns
- Rating objects, each of which contains a user ID, the given product ID, and a "score" in the rating field. Each represents one recommended user, and they are sorted by score, decreasing. The first returned is the one predicted to be most strongly recommended to the product. The score is an opaque value that indicates how strongly recommended the user is. 
 - Annotations
- @Since("1.1.0")
 
-    def recommendUsersForProducts(num: Int): RDD[(Int, Array[Rating])]Recommends top users for all products. Recommends top users for all products. - num
- how many users to return for every product. 
- returns
- [(Int, Array[Rating])] objects, where every tuple contains a productID and an array of rating objects which contains the recommended userId, same productID and a "score" in the rating field. Semantics of score is same as recommendUsers API 
 - Annotations
- @Since("1.4.0")
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- MatrixFactorizationModel → Saveable
- Annotations
- @Since("1.3.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    val userFeatures: RDD[(Int, Array[Double])]- Annotations
- @Since("0.8.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: HashMap[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)