public class BinaryClassificationEvaluator extends Evaluator implements HasRawPredictionCol, HasLabelCol, HasWeightCol, DefaultParamsWritable
| Constructor and Description |
|---|
BinaryClassificationEvaluator() |
BinaryClassificationEvaluator(String uid) |
| Modifier and Type | Method and Description |
|---|---|
BinaryClassificationEvaluator |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric.
|
String |
getMetricName() |
BinaryClassificationMetrics |
getMetrics(Dataset<?> dataset)
Get a BinaryClassificationMetrics, which can be used to get binary classification
metrics such as areaUnderROC and areaUnderPR.
|
int |
getNumBins() |
boolean |
isLargerBetter()
Indicates whether the metric returned by
evaluate should be maximized (true, default)
or minimized (false). |
Param<String> |
labelCol()
Param for label column name.
|
static BinaryClassificationEvaluator |
load(String path) |
Param<String> |
metricName()
param for metric name in evaluation (supports
"areaUnderROC" (default), "areaUnderPR") |
IntParam |
numBins()
param for number of bins to down-sample the curves (ROC curve, PR curve) in area
computation.
|
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static MLReader<T> |
read() |
BinaryClassificationEvaluator |
setLabelCol(String value) |
BinaryClassificationEvaluator |
setMetricName(String value) |
BinaryClassificationEvaluator |
setNumBins(int value) |
BinaryClassificationEvaluator |
setRawPredictionCol(String value) |
BinaryClassificationEvaluator |
setWeightCol(String value) |
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
getRawPredictionColgetLabelColgetWeightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnwritesavepublic BinaryClassificationEvaluator(String uid)
public BinaryClassificationEvaluator()
public static BinaryClassificationEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> rawPredictionCol()
HasRawPredictionColrawPredictionCol in interface HasRawPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic Param<String> metricName()
"areaUnderROC" (default), "areaUnderPR")public String getMetricName()
public BinaryClassificationEvaluator setMetricName(String value)
public IntParam numBins()
public int getNumBins()
public BinaryClassificationEvaluator setNumBins(int value)
public BinaryClassificationEvaluator setRawPredictionCol(String value)
public BinaryClassificationEvaluator setLabelCol(String value)
public BinaryClassificationEvaluator setWeightCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
public BinaryClassificationMetrics getMetrics(Dataset<?> dataset)
dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
or minimized (false).
A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic BinaryClassificationEvaluator copy(ParamMap extra)
ParamsdefaultCopy().public String toString()
toString in interface IdentifiabletoString in class Object