public interface TreeEnsembleParams extends DecisionTreeParams
Note: Marked as private and DeveloperApi since this may be made public in the future.
| Modifier and Type | Method and Description |
|---|---|
Param<String> |
featureSubsetStrategy()
The number of features to consider for splits at each tree node.
|
String |
getFeatureSubsetStrategy() |
Strategy |
getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures,
int numClasses,
scala.Enumeration.Value oldAlgo,
Impurity oldImpurity)
Create a Strategy instance to use with the old API.
|
double |
getSubsamplingRate() |
DoubleParam |
subsamplingRate()
Fraction of the training data used for learning each decision tree, in range (0, 1].
|
cacheNodeIds, getCacheNodeIds, getLeafCol, getMaxBins, getMaxDepth, getMaxMemoryInMB, getMinInfoGain, getMinInstancesPerNode, getMinWeightFractionPerNode, getOldStrategy, leafCol, maxBins, maxDepth, maxMemoryInMB, minInfoGain, minInstancesPerNode, minWeightFractionPerNode, setLeafColextractInstances, extractInstances, validateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uidcheckpointInterval, getCheckpointIntervalgetWeightCol, weightColDoubleParam subsamplingRate()
double getSubsamplingRate()
Strategy getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures, int numClasses, scala.Enumeration.Value oldAlgo, Impurity oldImpurity)
categoricalFeatures - (undocumented)numClasses - (undocumented)oldAlgo - (undocumented)oldImpurity - (undocumented)Param<String> featureSubsetStrategy()
These various settings are based on the following references: - log2: tested in Breiman (2001) - sqrt: recommended by Breiman manual for random forests - The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
String getFeatureSubsetStrategy()