public class MultilabelClassificationEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description |
|---|
MultilabelClassificationEvaluator() |
MultilabelClassificationEvaluator(String uid) |
| Modifier and Type | Method and Description |
|---|---|
MultilabelClassificationEvaluator |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric.
|
double |
getMetricLabel() |
String |
getMetricName() |
boolean |
isLargerBetter()
Indicates whether the metric returned by
evaluate should be maximized (true, default)
or minimized (false). |
Param<String> |
labelCol()
Param for label column name.
|
static MultilabelClassificationEvaluator |
load(String path) |
DoubleParam |
metricLabel() |
Param<String> |
metricName()
param for metric name in evaluation (supports
"f1Measure" (default), "subsetAccuracy",
"accuracy", "hammingLoss", "precision", "recall", "precisionByLabel",
"recallByLabel", "f1MeasureByLabel", "microPrecision", "microRecall",
"microF1Measure") |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<T> |
read() |
MultilabelClassificationEvaluator |
setLabelCol(String value) |
MultilabelClassificationEvaluator |
setMetricLabel(double value) |
MultilabelClassificationEvaluator |
setMetricName(String value) |
MultilabelClassificationEvaluator |
setPredictionCol(String value) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetPredictionColgetLabelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesavepublic MultilabelClassificationEvaluator(String uid)
public MultilabelClassificationEvaluator()
public static MultilabelClassificationEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic final Param<String> metricName()
"f1Measure" (default), "subsetAccuracy",
"accuracy", "hammingLoss", "precision", "recall", "precisionByLabel",
"recallByLabel", "f1MeasureByLabel", "microPrecision", "microRecall",
"microF1Measure")public String getMetricName()
public MultilabelClassificationEvaluator setMetricName(String value)
public final DoubleParam metricLabel()
public double getMetricLabel()
public MultilabelClassificationEvaluator setMetricLabel(double value)
public MultilabelClassificationEvaluator setPredictionCol(String value)
public MultilabelClassificationEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
or minimized (false).
A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic MultilabelClassificationEvaluator copy(ParamMap extra)
ParamsdefaultCopy().